- nonpositive connection
- нежёсткое соединение
English-Russian dictionary of mechanical engineering and automation. - RUSSO. B.S. Voskoboinikov, V.L. Mitrovich. 2003.
English-Russian dictionary of mechanical engineering and automation. - RUSSO. B.S. Voskoboinikov, V.L. Mitrovich. 2003.
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Bernoulli number — In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections to number theory. They are closely related to the values of the Riemann zeta function at negative integers. There are several conventions for… … Wikipedia
Gamma function — For the gamma function of ordinals, see Veblen function. The gamma function along part of the real axis In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function, with its… … Wikipedia
Riemannian geometry — Elliptic geometry is also sometimes called Riemannian geometry. Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric , i.e. with an inner product on the tangent… … Wikipedia
Géométrie différentielle des surfaces — En mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies… … Wikipédia en Français
Glossary of Riemannian and metric geometry — This is a glossary of some terms used in Riemannian geometry and metric geometry mdash; it doesn t cover the terminology of differential topology. The following articles may also be useful. These either contain specialised vocabulary or provide… … Wikipedia
Killing vector field — In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is,… … Wikipedia